What is the equation for the horizontal asymptote?
Category:
science
space and astronomy
A function of the form f(x) = a (bx) + c always has a horizontal asymptote at y = c. For example, the horizontal asymptote of y = 30e–6x – 4 is: y = -4, and the horizontal asymptote of y = 5 (2x) is y = 0.
Likewise, how do you find the equation of the horizontal asymptote?
To find horizontal asymptotes:
- If the degree (the largest exponent) of the denominator is bigger than the degree of the numerator, the horizontal asymptote is the x-axis (y = 0).
- If the degree of the numerator is bigger than the denominator, there is no horizontal asymptote.
Then, what is the rule for horizontal asymptote?
The three rules that horizontal asymptotes follow are based on the degree of the numerator, n, and the degree of the denominator, m. If n < m, the horizontal asymptote is y = 0. If n = m, the horizontal asymptote is y = a/b. If n > m, there is no horizontal asymptote.
A function of the form f(x) = a (bx) + c always has a horizontal asymptote at y = c. For example, the horizontal asymptote of y = 30e–6x – 4 is: y = -4, and the horizontal asymptote of y = 5 (2x) is y = 0.