What is MapReduce job?
Herein, what is MapReduce and how it works?
MapReduce is the processing layer of Hadoop. MapReduce is a programming model designed for processing large volumes of data in parallel by dividing the work into a set of independent tasks. Here in map reduce we get input as a list and it converts it into output which is again a list.
Additionally, what is MapReduce explain with example?
MapReduce is a programming framework that allows us to perform distributed and parallel processing on large data sets in a distributed environment. MapReduce consists of two distinct tasks – Map and Reduce. As the name MapReduce suggests, the reducer phase takes place after the mapper phase has been completed.
MapReduce Job or a A “full program” is an execution of a Mapper and Reducer across a data set. It is an execution of 2 processing layers i.e mapper and reducer. A MapReduce job is a work that the client wants to be performed. It consists of the input data, the MapReduce Program, and configuration info.